Рнк состав строение функции. Виды РНК, их функции, строение

Функции РНК различаются в зависимости от вида рибонуклеиновый кислоты.

1) Информационная РНК (и-РНК).

2) Рибосомная РНК (р-РНК).

3) Транспортная РНК (т-РНК).

4) Минорные (малые) РНК. Это молекулы РНК, чаще всего с небольшой молекулярной массой, располагающиеся в различных участках клетки (мембране, цитоплазме, органеллах, ядре и т.д.). Их роль до конца не изучена. Доказано, что они могут помогать созреванию рибосомной РНК, участвуют в переносе белков через мембрану клетки, способствуют редупликации молекул ДНК и т.д.

5) Рибозимы. Недавно выявленный вид РНК, принимающие активное участие в ферментативных процессах клетки в качестве фермента (катализатора).

6) Вирусные РНК. Любой вирус может содержать только один вид нуклеиновой кислоты: либо ДНК либо РНК. Соответственно, вирусы, имеющие в своём составе молекулу РНК, получили название РНК-содержащие. При попадании в клетку вируса данного типа может происходить процесс обратной транскрипции (образование новых ДНК на базе РНК), и уже вновь образовавшаяся ДНК вируса встраивается в геном клетки и обеспечивает существование, а также размножение возбудителя. Вторым вариантом сценария является образование комплиментарной РНК на матрице поступившей вирусной РНК. В этом случае, образование новых вирусных белков, жизнедеятельность и размножение вируса происходит без участия дезоксирибонуклеиновой кислоты только на основании генетической информации, записанной на вирусной-РНК. Рибонуклеиновые кислоты. РНК, строение, структуры, виды, роль. Генетический код. Механизмы передачи генетической информации. Репликация. Транскрипция

Рибосомная РНК.

На долю рРНК приходится 90% всей РНК клетки, она характеризуется метаболической стабильностью. У прокариот различают три различных типа рРНК с коэффициентами седиментации 23S,16S и 5S; у эукариот четыре типа:-28S, 18S,5S и 5,8S.

РНК этого типа локализованы в рибосомах и участвуют в специфическом взаимодействии с рибосомными белками.

Рибосомные РНК имеют форму вторичной структуры в виде которых двуспиральных участков, соединенных изогнутой одиночной цепью. Белки рибосомы связаны преимущественно с однотяжевыми участками молекулы.

Для рРНК характерно наличие модифицированных оснований, однако в значительно меньшем количестве, чем в тРНК. В рРНК присутствуют главным образом метилизированные нуклеотиды, причем метильные группы присоединены либо к основанию, либо к 2 / - OH- группе рибозы.

Транспортная РНК.

Молекулы тРНК представляют собой единую цепь, состоящую из 70-90 нуклеотидов, с молекулярной массой 23000-28000 и константой седиментации 4S. В клеточной РНК транспортная РНК составляет 10-20%. Молекулы тРНК обладают способностью ковалентно связываться с определенной аминокислотой и соединяться через систему водородных связей с одним из нуклеотидных триплетов молекулы мРНК. Таким образом, тРНК реализуют кодовое соответствие между аминокислотой и отвечающим ей кодоном мРНК. Для выполнения адапторной функции тРНК должны иметь вполне определенную вторичную и третичную структуру.


Каждая молекула тРНК обладает постоянной вторичной структурой, имеет форму двумерного клеверного листа и состоит из спиральных участков, образованных нуклеотидами одной и той же цепи, и расположенных между ними одноцепочечных петель. Количество спиральных областей достигает половины молекулы.Неспаренные последовательности образуют характерные структурные элементы (ветви),имеющие типичные ветви:

А) акцепторный стебель, на 3 / -OH конце которого в большинстве случаев расположен триплет ЦЦА. К карбоксильной группе концевого аденозина с помощью специфического фермента присоединяется соответствующая аминокислота;

Б) псевдоуридиновая или Т Ц-петля, состоит из семи нуклеотидов с обязательной последовательностью 5 / -Т ЦГ-3 / , в которой содержится псевдоуридин; предполагается что Т Ц-петля используется для связывания тРНК с рибосомой;

В) дополнительная петля-различная по размеру и составу в разных тРНК;

Г) антикодоновая петля состоит из семи нуклеотидов и содержит группу из трех оснований (антикодон), которая комплементарна триплету (кодону) в молекуле иРНК;

Д) дигидроуридиловая петля (D-петля), состоящая из 8-12 нуклеотидов и содержащая от одного до четырех дигидроуридиловых остатков;считается, что D-петля используется для связывания тРНК со специфическим ферментом (аминоацил-тРНК-синтетаза).

Третичная укладка молекул тРНК является весьма компактной и имеет Г-образную форму. Угол подобной структуры образован дигидроуридиновым остатком и Т Ц-петлей, длинное колено образует акцепторный стебель и Т Ц-петля, а короткое-D-петля и антикодоновая петля.

В стабилизации третичной структуры тРНК участвуют поливалентные катионы (Mg 2+ , полиамины), а также водородные связи между основаниями и фосфодиэфирным остовом.

Сложная постранственная укладка молекулы тРНК обусловлена множественными высокоспецифичными взаимодействиями как с белками, так и с другими нуклеиновыми кислотами (рРНК).

Транспортная РНК отличается от других типов РНК высоким содержанием минорных оснований-в среднем 10-12 оснований на молекулу, однако общее число их а тРНК растет по мере продважения организмов по эволюционной лестнице. В тРНК выявлены различные метилированные пуриновые (аденин, гуанин) и пиримидиновые (5-метилцитозин и рибозилтимин) основания, серосодержащие основания (6-тиоурацил), но наиболее распростран(6-тиоурацил), но наиболее распространенным минорным компонентом является псевдоуридин. Роль необычных нуклеотидов в молекулах тРНК пока не ясна, однако пологают, что чем ниже уровень митилирования тРНК, тем она менее активна и специфична.

Локализация модифицированных нуклеотидов строго фиксирована. Наличие минорных оснований в составе тРНК обуславливает устойчивасть молекул к действию нуклеаз и, кроме того, они участвуют в поддержании определенной структуры, так как подобные основания не способны к нормальному спариванию и препятствуют образованию двойной спирали. Таким образом, наличие модифицированных оснований в составе тРНК обуславливает не только её структуру, но также и многие специальные функции молекулы тРНК.

В большинстве клеток эукариот содержится набор различных тРНК. Для каждой аминокислоты имеется не менее чем по одной специфической тРНК. тРНК связывающие одну и ту же аминокислоту, называют изоакцепторными. Каждый тип клеток в организме отличется своим соотношением изоакцепторных тРНК.

Матричная (информационная)

Матричная РНК содержит генетическую информацию о последовательности аминокислот для основных ферментов и других белков, т.е. служит матицей для биосинтеза полипептидных цепей. На долю мРНК в клетке приходится 5% от общего количества РНК. В отличий от рРНК и тРНК,мРНК гетерогенна по размерам,её молекулярная масса находится в пределах от 25 10 3 до 1 10 6 ; мРНК характеризуется широким диапазоном констант седиментации (6-25S). Наличие в клетке цепи мРНК переменной длинны отражает разнообразие молекулярных масс белков, синтез которых они обеспечивают.

По своему нуклеотидному составу мРНК соответствует ДНК из той же клетки,т.е. является комплементарной к одной из цепи ДНК. В последовательности нуклеотидов (первичная структура) мРНК заложена информация не только о структуре белка, но и о вторичной структуре самих молекул мРНК. Вторичная структура мРНК формируется за счет взаимокомплементарных последовательностей, содержание которых у РНК различного происхождения сходно и состовляет от 40 до 50%. Значительное количество спаренных участков может образовываться в 3 / и 5 / -зонах мРНК.

Анализ 5 / -концов областей 18s рРНК показал,что в них имеются взаимокомплементарные последовательности.

Третичная структура мРНК формируется главным образом за счет водородных связей, гидрофобного взаимодействия, геометрического и стерического ограничения, электрических сил.

Матричная РНК представляет собой метаболически активную и относительно не стабильную, короткоживущую форму. Так, мРНК микроорганизмов характеризуется бысрым обновлением, ивремя жизни её состовляет несколько минут. Вместе с тем для организмов, клетки которых содержат истинные ограниченые мембраной ядра, продолжительность жизни мРНК может достигать многих часов и даже несколько дней.

Стабильность мРНК может определяться различного рода модификациями её молекулы. Так, обнаружено, что 5 / -концевая последовательность мРНК вирусов и эукариот метилирована,или «заблокирована». Первым нуклеотидом в 5 / -терминальной структуре кэпа является 7-метилгуанин, который связан со следующим нуклеотидом 5 / -5 / -пирофосфатной связью. Второй нуклеотид метилирован по C-2 / -рибозного остатка, а в третьем нуклеотиде метильной группы может и не быть.

Ещё одной способностью мРНК является то, что на 3 / -концах многих молекул мРНК эукариотических клеток имеются относительно длинные последовательности адениловых нуклеотидов, которые присоединяются к молекулам мРНК с помощью специальных ферентов уже после завершения синтеза. Реакция протекает в клеточном ядре и цитоплазме.

На 3 / - и 5 / - концах мРНК модифицируемые последовательности составляют около 25% от общей длины молекулы. Считают, что 5 / – кэпы и 3 / -поли-А – последовательности необходимы либо для стабилизации мРНК, предохраняющей её от действия нуклеаз, либо для регулирования процесса трансляции.

РНК-интерференция

В живых клетках обнаружено несколько типов РНК, которые могут уменьшать степень выражения гена при комплементарности мРНК или самому гену. Микро-РНК (21-22 нуклеотида в длину) найдены у эукариот и оказывают воздействие через механизм РНК-интерференции. При этом комплекс микро-РНК и ферментов может приводить к метилированию нуклеотидов в ДНК промотора гена, что служит сигналом для уменьшения активности гена. При использовании другого типа регуляции мРНК, комплементарная микро-РНК, деградируется. Однако есть и миРНК, которые увеличивают, а не уменьшают экспрессию генов. Малые интерферирующие РНК (миРНК, 20-25 нуклеотидов) часто образуются в результате расщепления вирусных РНК, но существуют и эндогенные клеточные миРНК. Малые интерферирующие РНК также действуют через РНК-интерференцию по сходным с микро-РНК механизмам. У животных найдены так называемыме РНК, взаимодействующие с Piwi (piRNA, 29-30 нуклеотидов), действующие в половых клетках против транспозиции и играющие роль в образовании гамет. Кроме того, piRNA могут эпигенетически наследоваться по материнской линии, передавая потомству своё свойство ингибировать экспрессию транспозонов.

Антисмысловые РНК широко распространены у бактерий, многие из них подавляют выражение генов, но некоторые активируют экспрессию. Действуют антисмысловые РНК, присоединяясь к мРНК, что приводит к образованию двуцепочечных молекул РНК, которые деградируются ферментами.У эукариот обнаружены высокомолекулярные, мРНК-подобные молекулы РНК. Эти молекулы также регулируют выражение генов.

Кроме роли отдельных молекул в регуляции генов, регуляторные элементы могут формироваться в 5" и 3" нетранслируемых участках мРНК. Эти элементы могут действовать самостоятельно, предотвращая инициацию трансляции, либо присоединять белки, например, ферритин или малые молекулы, например, биотин.

Многие РНК принимают участие в модификации других РНК. Интроны вырезаются из пре-мРНК сплайсосомами, которые, кроме белков, содержат несколько малых ядерных РНК (мяРНК). Кроме того, интроны могут катализировать собственное вырезание. Синтезированая в результате транскрипции РНК также может быть химически модифицирована. У эукариот химические модификации нуклеотидов РНК, например, их метилирование, выполняется малыми ядерными РНК (мяРНК, 60-300 нуклеотидов). Этот тип РНК локализуется в ядрышко и тельцах Кахаля. После ассоциации мяРНК с ферментами, мяРНК связываются с РНК-мишенью путём образования пар между основаниями двух молекул, а ферменты модифицируют нуклеотиды РНК-мишени. Рибосомальные и транспортные РНК содержат много подобных модификаций, конкретное положение которых часто сохраняется в процессе эволюции. Также могут быть модифицированы мяРНК и сами мяРНК. Гидовые РНК осуществляют процесс редактирования РНК в кинетопласте - особом участке митохондрии протистов-кинетопластид (например, трипаносом).

Геномы, состоящие из РНК

Как и ДНК, РНК может хранить информацию о биологических процессах. РНК может использоваться в качестве генома вирусов и вирусоподобных частиц. РНК-геномы можно разделить на те, которые не имеют промежуточной стадии ДНК и те, которые для размножения копируются в ДНК-копию и обратно в РНК (ретровирусы).

Многие вирусы, например, вирус гриппа, на всех стадиях содержат геном, состоящий исключительно из РНК. РНК содержится внутри обычно белковой оболочки и реплицируется с помощью закодированных в ней РНК-зависимых РНК-полимераз. Вирусные геномы, состоящие из РНК разделяются на:

«минус-цепь РНК», которая служит только геномом, а в качестве мРНК используется комплементарная ей молекула;

двухцепоченые вирусы.

Вироиды - другая группа патогенов, содержащих РНК-геном и не содержащих белок. Они реплицируются РНК-полимеразами организма хозяина.

Ретровирусы и ретротранспозоны

У других вирусов РНК-геном есть в течение только одной из фаз жизненного цикла. Вирионы так называемых ретровирусов содержат молекулы РНК, которые при попадании в клетки хозяина служат матрицей для синтеза ДНК-копии. В свою очередь, с матрицы ДНК считывается РНК-геном. Кроме вирусов обратную транскрипции применяют и класс мобильных элементов генома - ретротранспозоны.

Время, в которое мы живем, отмечено потрясающими переменами, огромным прогрессом, когда люди получают ответы на все новые и новые вопросы. Жизнь стремительно движется вперед, и то, что еще совсем недавно казалось невозможным, начинает претворяться в жизнь. Вполне возможно, что представляется сегодня сюжетом из жанра фантастики, скоро тоже приобретет черты реальности.

Одним из важнейших открытий во второй половине двадцатого столетия стали нуклеиновые кислоты РНК и ДНК, благодаря которым человек приблизился к разгадкам тайн природы.

Нуклеиновые кислоты

Нуклеиновые кислоты - это органические соединения, обладающие высокомолекулярными свойствами. В их состав входят водород, углерод, азот и фосфор.

Они были открыты в 1869 году Ф. Мишером, который исследовал гной. Однако тогда его открытию не придали особого значения. Лишь позже, когда эти кислоты обнаружили во всех животных и растительных клетках, пришло понимание огромной их роли.

Существуют два вида нуклеиновых кислот: РНК и ДНК (рибонуклеиновые и дезоксирибонуклеиновые кислоты). Настоящая статья посвящена рибонуклеиновой кислоте, но для общего понимания рассмотрим также, что собой представляет ДНК.

Что такое

ДНК — это состоящая из двух нитей, которые соединены по закону комплементарности водородными связями азотистых оснований. Длинные цепи закручены в спираль, один виток содержит почти десять нуклеотидов. Диаметр двойной спирали составляет два миллиметра, расстояние между нуклеотидами - около половины нанометра. Длина одной молекулы порой достигает нескольких сантиметров. Длина ДНК ядра человеческой клетки составляет почти два метра.

В структуре ДНК содержится вся ДНК обладает репликацией, что означает процесс, в ходе которого из одной молекулы образуются две совершенно одинаковые - дочерние.

Как уже было отмечено, цепь складывается из нуклеотидов, состоящих, в свою очередь, из азотистых оснований (аденина, гуанина, тимина и цитозина) и остатка кислоты фосфора. Все нуклеотиды различаются азотистыми основаниями. Водородная связь возникает не между всеми основаниями, аденин, к примеру, может соединяться только с тимином или гуанином. Таким образом, адениловых нуклеотидов в организме столько же, сколько тимидиловых, а число гуаниловых равно цитидиловым (правило Чаргаффа). Получается, что последовательность одной цепочки предопределяет последовательность другой, и цепи как бы зеркально отражают друг друга. Такая закономерность, где нуклеотиды двух цепей располагаются упорядоченно, а также соединяются избирательно, называется принципом комплементарности. Кроме водородных соединений, двойная спираль взаимодействует и гидрофобно.

Две цепи разнонаправлены, то есть расположены в противоположных направлениях. Поэтому напротив трех"-конца одной находится пяти"-конец другой цепи.

Внешне напоминает винтовую лестницу, перилом которой является сахарофосфатный остов, а ступеньками — комплементарные основания азота.

Что такое рибонуклеиновая кислота?

РНК — это нуклеиновая кислота с мономерами, называющимися рибонуклеотидами.

По химическим свойствам она очень похожа на ДНК, так как обе являются полимерами нуклеотидов, представляющих собой фосфолированный N-гликозид, который выстроен на остатке пентозы (пятиуглеродного сахара), с фосфатной группой пятого углеродного атома и основания азота при первом углеродном атоме.

Она представляет собой одну полинуклеотидную цепочку (кроме вирусов), которая намного короче, чем у ДНК.

Один мономер РНК — это остатки следующих веществ:

  • основания азота;
  • пятиуглеродного моносахарида;
  • кислоты фосфора.

РНК имеют пиримидиновые (урацил и цитозин) и пуриновые (аденин, гуанин) основания. Рибоза является моносахаридом нуклеотида РНК.

Отличия РНК и ДНК

Нуклеиновые кислоты отличаются друг от друга следующими свойствами:

  • количество ее в клетке зависит от физиологического состояния, возраста и органной принадлежности;
  • ДНК содержит углевод дезоксирибозу, а РНК — рибозу;
  • азотистое основание у ДНК — тимин, а у РНК — урацил;
  • классы выполняют различные функции, но синтезируются на матрице ДНК;
  • ДНК состоит из двойной спирали, а РНК — из одинарной цепи;
  • для нее нехарактерны действующие у ДНК;
  • в РНК больше минорных оснований;
  • цепи существенно отличаются по длине.

История изучения

Клетка РНК впервые была открыта биохимиком из Германии Р. Альтманом при исследовании дрожжевых клеток. В середине двадцатого века была доказана роль ДНК в генетике. Лишь тогда описали и типы РНК, функции и так далее. До 80-90% массы в клетке приходится на р-РНК, образующих совместно с белками рибосому и участвующих в биосинтезе белка.

В шестидесятых годах прошлого столетия впервые предположили, что должен существовать некий вид, который несет в себе генетическую информацию для синтеза белка. После этого научно установили, что есть такие информационные рибонуклеиновые кислоты, представляющие комплементарные копии генов. Их еще называют матричными РНК.

В декодировании записанной в них информации участвуют так называемые транспортные кислоты.

Позже стали разрабатываться способы выявления последовательности нуклеотидов и устанавливаться структура РНК в пространстве кислоты. Так было обнаружено, что некоторые из них, которые назвали рибозимами, могут расщеплять полирибонуклеотидные цепи. Вследствие этого стали предполагать, что в то время, когда зарождалась жизнь на планете, РНК действовала и без ДНК и белков. При этом все превращения производились с ее участием.

Строение молекулы рибонуклеиновой кислоты

Почти все РНК - это одиночные цепи полинуклеотидов, которые, в свою очередь, состоят из монорибонуклеотидов — пуриновых и пиримидиновых оснований.

Нуклеотиды обозначают начальными буквами оснований:

  • аденина (А), А;
  • гуанина (G), Г;
  • цитозина (С), Ц;
  • урацила (U), У.

Они связаны между собой трех- и пятифосфодиэфирными связями.

Самое разное количество нуклеотидов (от нескольких десятков до десятков тысяч) входит в строение РНК. Они могут формировать вторичную структуру, состоящую в основном из коротких двуцепочных тяжей, которые образовались комплементарными основаниями.

Структура молекулы рибнуклеиновой кислоты

Как уже было сказано, у молекулы имеется однонитевое строение. РНК получает вторичную структуру и форму в результате взаимодействия нуклеотидов между собой. Это полимер, мономером которого является нуклеотид, состоящий из сахара, остатка кислоты фосфора и основания азота. Внешне молекула похожа на одну из цепей ДНК. Нуклеотиды аденин и гуанин, входящие в состав РНК, относятся к пуриновым. Цитозин и урацил являются пиримидиновыми основаниями.

Процесс синтеза

Чтобы молекула РНК синтезировалась, матрицей является молекула ДНК. Бывает, правда, и обратный процесс, когда новые молекулы дезоксирибонуклеиновой кислоты образуются на матрице рибонуклеиновой. Такое встречается при репликации некоторых видов вирусов.

Основой для биосинтеза могут служить также другие молекулы рибонуклеиновой кислоты. В ее транскрипции, которая происходит в ядре клетки, участвуют много ферментов, но самым значимым из них является РНК-полимераза.

Виды

В зависимости от вида РНК, функции ее также отличаются. Существуют несколько видов:

  • информационная и-РНК;
  • рибосомальная р-РНК;
  • транспортная т-РНК;
  • минорная;
  • рибозимы;
  • вирусные.

Информационная рибонуклеиновая кислота

Такие молекулы еще называют матричными. Они составляют в клетке примерно два процента от всего количества. В клетках эукариот они синтезируются в ядрах на ДНК-матрицах, переходя затем в цитоплазму и связываясь с рибосомами. Далее, они становятся матрицами для синтеза белка: к ним присоединяются транспортные РНК, которые несут аминокислоты. Так происходит процесс преобразования информации, которая реализуется в уникальной структуре белка. В некоторых вирусных РНК она к тому же является хромосомой.

Жакоб и Мано являются открывателями этого вида. Не имея жесткой структуры, ее цепь образует изогнутые петли. Не работая, и-РНК собирается в складки и сворачивается в клубок, а в рабочем состоянии разворачивается.

и-РНК несет в себе информацию о последовательности аминокислот в белке, который синтезируется. Каждая аминокислота закодирована в определенном месте при помощи генетических кодов, которым свойственны:

  • триплетность — из четырех мононуклеотидов возможно выстроить шестьдесят четыре кодона (генетического кода);
  • неперекрещиваемость — информация движется в одном направлении;
  • непрерывность — принцип работы сводится к тому, что одна и-РНК — один белок;
  • универсальность — тот или иной вид аминокислоты кодируется у всех живых организмов одинаково;
  • вырожденность — известными являются двадцать аминокислот, а кодонов — шестьдесят один, то есть они кодируются несколькими генетическими кодами.

Рибосомальная рибонуклеиновая кислота

Такие молекулы составляют подавляющее большинство клеточных РНК, а именно от восьмидесяти до девяноста процентов от общего количества. Они соединяются с белками и формируют рибосомы — это органоиды, выполняющие синтез белков.

Рибосомы состоят на шестьдесят пять процентов из р-РНК и на тридцать пять процентов из белка. Эта полинуклеотидная цепь без труда изгибается вместе с белком.

Рибосома состоит из аминокислотного и пептидного участков. Они расположены на контактирующих поверхностях.

Рибосомы свободно передвигаются нужных местах. Они не очень специфичны и могут не только считывать информацию с и-РНК, но и образовывать с ними матрицу.

Транспортная рибонуклеиновая кислота

т-РНК наиболее изучены. Они составляют десять процентов клеточной рибонуклеиновой кислоты. Эти виды РНК связываются с аминокислотами благодаря специальному ферменту и доставляются на рибосомы. При этом аминокислоты переносятся транспортными молекулами. Однако бывает, что аминокислоту кодируют разные кодоны. Тогда переносить их будут несколько транспортных РНК.

Она сворачивается в клубочек, когда неактивна, а функционируя, имеет вид клеверного листа.

В ней различаются следующие участки:

  • акцепторный стебель, имеющий последовательность нуклеотидов АЦЦ;
  • участок, служащий для присоединения к рибосоме;
  • антикодон, кодирующий аминокислоту, которая присоединена к этой т-РНК.

Минорный вид рибонуклеиновой кислоты

Недавно виды РНК пополнились новым классом, так называемыми малыми РНК. Они, скорее всего, являются универсальными регуляторами, которые включают или выключают гены в эмбриональном развитии, а также контролируют процессы внутри клеток.

Рибозимы также недавно выявлены, они активно принимают участие, когда кислота РНК ферментируется, являясь при этом катализатором.

Вирусные виды кислот

Вирус способен содержать либо рибонуклеиновую кислоту, либо дезоксирибонуклеиновую. Поэтому с соответствующими молекулами они называются РНК-содержащими. При попадании в клетку такого вируса происходит обратная транскрипция — на базе рибонуклеиновой кислоты появляются новые ДНК, которые встраиваются в клетки, обеспечивая существование и размножение вируса. В другом случае происходит образование комплиментарной на поступившей РНК. Вирусы белков, жизнедеятельность и размножение идет без ДНК, а лишь на основе информации, содержащейся в РНК вируса.

Репликация

В целях улучшения общего понимания необходимо рассмотреть процесс репликации, в результате которого появляются две идентичные молекулы нуклеиновой кислоты. Так начинается деление клетки.

В ней участвуют ДНК-полимеразы, ДНК-зависимые, РНК-полимеразы и ДНК-лигазы.

Процесс репликации состоит из следующих этапов:

  • деспирализация — происходит последовательное раскручивание материнской ДНК, захватывающей всю молекулу;
  • разрыв водородных связей, при котором цепи расходятся, и появляется репликативная вилка;
  • подстройка дНТФ к освободившимся основаниям материнских цепей;
  • отщепление пирофосфатов от дНТФ молекул и образование фосфорнодиэфирных связей за счет выделяющейся энергии;
  • респирализация.

После образования дочерней молекулы делится ядро, цитоплазма и остальное. Таким образом, образуются две дочерние клетки, полностью получившие всю генетическую информацию.

Кроме этого, кодируется первичная структура белков, которые в клетке синтезируются. ДНК в этом процессе принимает косвенное участие, а не прямое, заключающееся в том, что именно на ДНК происходит синтез, участвующих в образовании белков, РНК. Этот процесс получил название транскрипции.

Транскрипция

Синтез всех молекул происходит во время транскрипции, то есть переписывании генетической информации с определенного оперона ДНК. Процесс в некоторых моментах похож на репликацию, а в других существенно отличается от нее.

Сходствами являются следующие части:

  • начало идет с деспирализации ДНК;
  • происходит разрыв водородных связей между основаниями цепей;
  • к ним комплементарно подстраиваются НТФ;
  • происходит образование водородных связей.

Отличия от репликации:

  • при транскрипции расплетается лишь участок ДНК, соответствующий транскриптону, в то время как при репликации расплетению подвергается вся молекула;
  • при транскрипции подстраивающиеся НТФ содержат рибозу, и вместо тимина урацил;
  • информация списывается лишь с определенного участка;
  • после образования молекулы водородные связи и синтезированная цепь разрываются, а цепь соскальзывает с ДНК.

Для нормального функционирования первичная структура РНК должна состоять только из списанных с экзонов ДНК-участков.

У только что образованных РНК начинается процесс созревания. Молчащие участки вырезаются, а информативные сшиваются, образуя полинуклеотидную цепь. Далее, каждый вид имеет присущие только ему превращения.

В и-РНК происходит присоединение к начальному концу. К конечному участку присоединяется полиаденилат.

В т-РНК модифицируются основания, образуя минорные виды.

У р-РНК также метилируются отдельные основания.

Защищают от разрушения и улучшают транспортировку в цитоплазму белки. РНК в зрелом состоянии с ними соединяются.

Значение дезоксирибонуклеиновых и рибонуклеиновых кислот

Нуклеиновые кислоты имеют огромное значение в жизнедеятельности организмов. В них хранится, переносится в цитоплазму и передается по наследству дочерним клеткам информация о белках, синтезирующихся в каждой клетке. Они присутствуют во всех живых организмах, стабильность этих кислот играет важнейшую роль для нормального функционирования как клеток, так и всего организма. Любые изменения в их строении приведут к клеточным изменениям.

Основу жизни образуют белки. Функции их в клетке очень разнообразны. Однако белки «не умеют» размножаться. А вся информация о строении белков содержится в генах (ДНК).

У высших организмов белки синтезируются в цитоплазме клетки, а ДНК сокрыта за оболочкой ядра. Поэтому ДНК непосредственно не может быть матрицей для синтеза белка. Эту роль выполняет другая нуклеиновая кислота – РНК.

Молекула РНК представляет собой неразветвленный полинуклеотид, обладающий третичной структурой . Она образована одной полинуклеотидной цепочкой, и, хотя входящие в ее состав комплементарные нуклеотиды также способны образовывать между собой водородные связи, эти связи возникают между нуклеотидами одной цепочки. Цепи РНК значительно короче цепей ДНК. Если содержание ДНК в клетке относительно постоянно, то содержание РНК сильно колеблется. Наибольшее количество РНК в клетках наблюдается во время синтеза белка.

РНК принадлежит главная роль в передаче и реализации наследственной информации . В соответствии с функцией и структурными особенностями различают несколько классов клеточных РНК.

Существует три основных класса клеточных РНК.

  1. Информационная (иРНК), или матричная (мРНК) . Ее молекулы наиболее разнообразны по размерам, молекулярной массе (от 0,05х106 до 4х106) и стабильности. Составляют около 2% от общего количества РНК в клетке. Все иРНК являются переносчиками генетической информации из ядра в цитоплазму, к месту синтеза белка. Они служат матрицей (рабочим чертежом) для синтеза молекулы белка, так как определяют аминокислотную последовательность (первичную структуру) белковой молекулы.
  1. Рибосомальные РНК (рРНК) . Составляют 80–85% от общего содержания РНК в клетке. Рибосомальная РНК состоит из 3–5 тыс. нуклеотидов. Она синтезируется в ядрышках ядра. В комплексе с рибосомными белками рРНК образует рибосомы – органоиды, на которых происходит сборка белковых молекул. Основное значение рРНК состоит в том, что она обеспечивает первоначальное связывание иРНК и рибосомы и формирует активный центр рибосомы, в котором происходит образование пептидных связей между аминокислотами в процессе синтеза полипептидной цепи.
  2. Транспортные РНК (тРНК) . Молекулы тРНК содержат обычно 75-86 нуклеотидов. Молекулярная масса молекул тРНК около 25 тыс. Молекулы тРНК играют роль посредников в биосинтезе белка – они доставляют аминокислоты к месту синтеза белка, то есть на рибосомы. В клетке содержится более 30 видов тРНК. Каждый вид тРНК имеет характерную только для него последовательность нуклеотидов. Однако у всех молекул имеется несколько внутримолекулярных комплементарных участков, благодаря наличию которых все тРНК имеют третичную структуру, напоминающую по форме клеверный лист.

Вторичная структура РНК – характерна для тРНК, одноцепочечная, по форме напоминает «клеверный лист». Включает:

  • сравнительно короткие двойные спирали – стебли,
  • однотяжевые участки – петли.

Имеется 4 стебля (акцепторный, антикодоновый, дигидроуридиловый, псевдоуридиловый) и 3 петли.

«Псевдоузел» - элемент вторичной структуры РНК, схематично

Акцепторный стебель – содержит 3’- и 5’- концы полинуклеотидной цепи, 5’-конец заканчивается остатком гуаниловой кислоты, 3’-конец – триплетом ЦЦА и служит для образования сложноэфирной связи с АК.

Антикодоновый стебель узнает свой кодон на и-РНК в рибосомах по принципу комплементарности.

Псевдоуридиловый стебель служит для прикрепления к рибосоме.

Дигидроуридиловый стебель служит для связи с аминоацил-тРНК-синтетазой.

Нуклеиновые кислоты - высокомолекулярные вещества, состоящие из мононуклеотидов, которые соединены друг с другом в полимерную цепочку с помощью 3",5"- фосфодиэфирных связей и упакованы в клетках определенным образом.

Нуклеиновые кислоты - биополимеры двух разновидностей: рибонуклеиновая кислота (РНК) и дезоксирибонуклеиновая кислота (ДНК) . Каждый биополимер состоит из нуклеотидов, различающихся по углеводному остатку (рибозе, дезоксирибозе) и одному из азотистых оснований (урацил, тимин). Соответственно этим различиям нуклеиновые кислоты и получили свое название.

Структура рибонуклеиновой кислоты

Первичная структура РНК

Молекула РНК представляют собой линейные (т. е. неразветвленные) полинуклеотиды с аналогичным ДНК принципом организации. Мономерами РНК являются нуклеотиды, состоящие из фосфорной кислоты, углевода (рибозы) и азотистого основания, соединенные 3", 5"-фосфодиэфирными связями. Полинуклеотидные цепи молекулы РНК полярны, т.е. имеют различимые 5’- и 3"-концы. При этом, в отличие от ДНК, РНК является одноцепочечной молекулой. Причиной такого отличия служат три особенности первичной структуры:
  1. РНК в отличие от ДНК содержит вместо дезоксирибозы рибозу, которая имеет дополнительную гидроксигруппу. Гидроксигруппа делает двухцепочечную структуру менее компактной
  2. Среди четырех главных, или мажорных, азотистых оснований (А, Г, Ц и У) вместо тимина содержится урацлл, отличающийся от тимина лишь отсутствием метильной группы в 5-м положении. Благодаря этому уменьшается сила гидрофобного взаимодействия в комплементарной паре A-У, что тоже снижает вероятность образования устойчивых двухцепочечных молекул.
  3. Наконец, в РНК (особенно в тРНК) высоко содержание т. н. минорных оснований и нуклеозидов. Среди них дигидроуридин (в урациле нет одной двойной связи), псевдоуридин (урацил иначе, чем обычно, связан с рибозой), диметиладенин и диметилгуанин (в азотистых основаниях по две дополнительных метильных группы) и многие другие. Почти все эти основания не могут участвовать в комплементарных взаимодействиях. Так, метильные группы в диметиладенине (в отличие от тимина и 5-метилцитозина) находятся при таком атоме, который в паре A-У образует водородную связь; следовательно, теперь данная связь замкнуться не может. Это тоже препятствует образованию двухцепочечных молекул.

Таким образом, широко известные отличия состава РНК от ДНК имеют огромное биологическое значение: ведь свою функцию молекулы РНК способны выполнять только в одноцепочечном состоянии, что наиболее очевидно для мРНК: трудно представить, как бы могла двухцепочечная молекула транслироваться на рибосомах.

Вместе с тем, оставаясь одиночной, в некоторых участках цепь РНК может образовывать петли, выступы или "шпильки", с двухцепочечной структурой (рис.1.). Эта структура стабилизирована взаимодействием оснований в парах А::У и Г:::Ц. Однако могут образовываться и "не правильные" пары (например, Г У), а в некоторых местах "шпильки" и вообще не происходит никакого взаимодействия. В составе таких петель может содержаться (особенно в тРНК и рРНК) до 50 % всех нуклеотидов. Общее же содержание нуклеотидов в РНК варьирует от 75 единиц до многих тысяч. Но даже самые крупные РНК на несколько порядков короче хромосомных ДНК.

Первичная структура мРНК скопирована с участка ДНК, содержащего информацию о первичной структуре полипептидной цепи. Первичная структура остальных типов РНК (тРНК, рРНК, редкие РНК) является окончательной копией генетической программы соответствующих генов ДНК.

Вторичная и третичная структуры РНК

Рибонуклеиновые кислоты (РНК) - однонитевые молекулы, поэтому в отличие от ДНК их вторичная и третичная структуры нерегулярны. Эти структуры, определяемые как пространственная конформация полинуклеотидной цепи, формируются в основном за счет водородных связей и гидрофобных взаимодействий между азотистыми основаниями. Если для молекулы нативной ДНК характерна устойчивая спираль, то структура РНК более многообразна и лабильна. Рентгеноструктурный анализ показал, что отдельные участки полинуклеотидной цепи РНК, перегибаясь, навиваются сами на себя с образованием внутриспиральных структур. Стабилизация структур достигается за счет комплементарных спариваний азотистых оснований антипараллельных участков цепи; специфическими парами здесь являются А-U, G-С и, реже, G–U. Благодаря этому в молекуле РНК возникают как короткие, так и протяженные биспиральные участки, принадлежащие одной цепи; эти участки носят название шпилек. Модель вторичной структуры РНК со шпилькообразными элементами была создана в конце 50-х - начале 60-х гг. XX в. в лабораториях А. С. Спирина (Россия) и П. Доти (США).

Некоторые виды РНК
Виды РНК Размер в нуклеотидах Функция
gРНК - геномные РНК 10000-100000
mРНК - информационные (матричные) РНК 100-100000 передает информацию о структуре белка с молекулы ДНК
tPHK - транспортные РНК 70-90 транспортирует аминокислоты к месту синтеза белка
rРНК - рибосомные РНК несколько дискретных классов от 100 до 500000 содержится в рибосомах, участвует в поддержании структуры рибосомы
sn-PHK - малая ядерная РНК 100 удаляет интроны и ферментативно соединяет экзоны в мРНК
sno-РНК - малая ядрышковая РНК участвует в направлении или проведении модификаций оснований в рРНК и малой ядерной РНК, таких, как, например, метилирование и псевдоуридинизация. Большинство малых ядрышковых РНК находятся в интронах других генов
srp-РНК - сигналраспознающая РНК распознаёт сигнальную последовательность белков, предназначенных для экспрессии, и участвует в их переносе через цитоплазматическую мембрану
mi-РНК - микро-РНК 22 контролируют трансляцию структурных генов путём комплементарного связывания с 3"-концами нетранслируемых участков иРНК

Образование спиральных структур сопровождается гипохромным эффектом - уменьшением оптической плотности образцов РНК при 260 нм. Разрушение этих структур происходит при понижении ионной силы раствора РНК или при его нагревании до 60-70 °С; оно также называется плавлением и объясняется структурным переходом спираль - хаотический клубок, что сопровождается увеличением оптической плотности раствора нуклеиновой кислоты.

В клетках существуют несколько типов РНК:

  1. информационная (или матричная) РНК (иРНК или мРНК) и её предшественница - гетерогенная ядерная РНК (г-я-РНК)
  2. транспортная РНК (т-РНК) и ее предшественница
  3. рибосомная (р-РНК) и ее предшественница
  4. малая ядерная РНК (sn-PHK)
  5. малая ядрышковая РНК (sno-PHK)
  6. сигналраспознающая РНК (srp-PHK)
  7. микро-РНК (mi-PHK)
  8. митохондриальная РНК (т+ РНК).

Гетерогенная ядерная и информационная (матричная) РНК

Гетерогенная ядерная РНК свойственна исключительно эукариотам. Она является предшественницей информационной РНК (и-РНК), которая переносит генетическую информацию от ядерной ДНК к цитоплазме. Гетерогенная ядерная РНК (пре-мРНК) открыта советским биохимиком Г. П. Георгиевым. Количество видов г-я-РНК равно количеству генов, так как она служит прямой копией кодирующих последовательностей генома, в силу чего имеет копии палиндромов ДНК, поэтому ее вторичная структура содержит шпильки и линейные участки. В процессе транскрипции РНК с ДНК ключевую роль играет фермент РНК-полимераза II.

Информационная РНК образуется в результате процессинга (созревания) г-я-РНК, при котором происходят отсечение шпилек, вырезание некодирующих участков (интронов) и склеивание кодирующих экзонов.

Информационная РНК (и-РНК) представляет собой копию определенного участка ДНК и выполняет роль переносчика генетической информации от ДНК к месту синтеза белка (рибосомы) и непосредственно участвует в сборке его молекул.

Зрелая матричная РНК имеет несколько областей с различной функциональной ролью (рис.)

  • на 5"-конце находится т.н. "колпачок" или кэп - участок из одного-четырех модифицированных нуклеотидов. Такая структура защищает 5"-конец м-РНК от эндонуклеаз
  • за "колпачком" идет 5"-нетранслируемая область - последовательность из нескольких десятков нуклеотидов. Она комплементрана одному из отделов той р-РНК, которая входит в малую субъединицу рибосомы. За счет этого она служит для первичного связывания м-РНК с рибосомой, но сама не транслируется
  • инициирующий кодон - АУГ, кодирующий метионин. Во всех м-РНК инициирующий кодон одинаков. С него начинается трансляция (считывание) м-РНК. Если после синтеза пептидной цепи метионин не нужен, то он, как правило, отщепляется с ее N-конца.
  • За инициирующим кодоном следует кодирующая часть, которая содержит информацию о последовательности аминокислот в белке. У эукариот зрелые м-РНК являются моноцистронными, т.е. каждая из них несет информацию о структуре только одной полипептидной цепи.

    Другое дело, что иногда пептидная цепь вскоре после образования на рибосоме разрезается на несколько более мелких цепей. Так бывает, например, при синтезе инсулина и целого ряда олигопептидных гормонов.

    Кодирующая часть зрелой м-РНК эукариот лишена интронов - каких-либо вставочных некодирующих последовательностей. Иными словами, имеется непрерывная последовательность смысловых кодонов, которая должна читаться в направлении 5" ->3".

  • По окончании этой последовательности находится кодон терминации - один из трех "бессмысленных" кодонов: УАА, УАГ или УГА (см. табл. генетического кода ниже).
  • За этим кодоном может следовать еще 3"-нетранслируемый участок, значительно превышающий по длине 5’-нетранслируемую область.
  • Наконец, почти все зрелые мРНК эукариот (кроме гистоновых мРНК) на 3"-конце содержат поли(А)-фрагмент из 150-200 адениловых нуклеотидов

3"-нетранслируемый участок и поли(А)-фрагмент имеют отношение к регуляции продолжительности жизни м-РНК, поскольку разрушение м-РНК осуществляется 3"-экзонуклеазами. После окончания трансляции м-РНК от поли(А)-фрагмента отщепляются 10-15 нуклеотидов. Когда данный фрагмент исчерпывается, начинает разрушаться значащая часть мРНК (если отсутствует 3"-нетранслируемый участок).

Общее количество нуклеотидов в мРНК обычно варьирует в пределах нескольких тысяч. При этом на кодирующую часть иногда может приходиться лишь 60-70 % нуклеотидов.

В клетках молекулы мРНК практически всегда связаны с белками. Последние, вероятно, стабилизируют линейную структуру мРНК, т. е. предупреждают образование в кодирующей части "шпилек". Кроме того, белки могут защищать м-РНК от преждевременного разрушения. Такие комплексы мРНК с белками иногда называют информосомами.

Транспортная РНК в цитоплазме клетки переносит аминокислоты в активированной форме к рибосомам, где они соединяются в пептидные цепи в определенной последовательности, которую задает РНК-матрица (мРНК). В настоящее время известны данные о нуклеотидной последовательности более чем 1700 видов тРНК из прокариотических и эукариотических организмов. Все они имеют общие черты как в их первичной структуре, так и в способе складывания полинуклеотидной цепи во вторичную структуру за счет комплементарного взаимодействия входящих в их структуру нуклеотидов.

Транспортная РНК в своем составе содержит не больше 100 нуклеотидов, среди которых отмечается высокое содержание минорных, или модифицированных, нуклеотидов.

Первой полностью расшифрованной транспортной РНК была аланиновая РНК, выделенная из дрожжей. Анализ показал, что аланиновая РНК состоит из 77 нуклеотидов, расположенных в строго определенной последовательности; в их состав входят так называемые минорные нуклеотиды, представленные нетипичными нуклеозидами

  • дигидроуридин (dgU) и псевдоуридин (Ψ);
  • инозин (I): по сравнению с аденозином, аминогруппа замещена на кетогруппу;
  • метилинозин (мI), метил- и диметилгуанозин (мG и м 2 G);
  • метилуридин (мU): то же самое, что риботимидин.

Аланиновая тРНК содержит 9 необычных оснований с одной или несколькими метильными группами, которые присоединяются к ним ферментативным путем уже после образования фосфодиэфирных связей между нуклеотидами. Эти основания неспособны к образованию обычных пар; возможно, они служат для того, чтобы препятствовать спариванию оснований в определенных частях молекулы и таким образом обнажать специфические химические группы, которые образуют вторичные связи с информационной РНК, рибосомой или, быть может, с ферментом, необходимым для присоединения определенной аминокислоты к соответствующей транспортной РНК.

Известная последовательность нуклеотидов в тРНК по существу означает, что известна также его последовательность в генах, на которых эта тРНК синтезируется. Эту последовательность можно вывести основываясь на правилах специфического спаривания оснований, установленных Уотсоном и Криком. В 1970 году была синтезирована полная двухцепочечная молекула ДНК с соответсвующей последовательностью из 77 нуклеотидов, и оказалось, что она может служить матрицей для построения аланиновой транспортной РНК. Это был первый искусственно синтезированный ген.

Транскрипция тРНК

Транскрипция молекул т-РНК происходит с кодирующих её последовательностей в ДНК при участии фермента РНК-полимеразы III. В ходе транскрипции формируется первичная структура тРНК в виде линейной молекулы. Формирование начинается с составления РНК-полимеразой последовательности нуклеотидов в соответствии с геном, содержащим информацию о данной транспортной РНК. Эта последовательность представляет из себя линейную полинуклеотидную цепь, в которой нуклеотиды следуют друг за другом. Линейная полинуклеотидная цепь является первичной РНК, предшественницей тРНК, включающей в себя интроны - неинформативные излишки нуклеотидов. На этом уровне организации пре-тРНК не функциональна. Образуясь в разных местах ДНК хромосом пре-тРНК содержит излишки примерно в 40 нуклеотидов по сравнению со зрелой тРНК.

Вторым этапом вновь синтезированная предшественница тРНК проходит послетранскрипционное созревание или процессинг. В ходе процессинга удаляются неинформативные излишки в пре-РНК и образуются зрелые, функциональные молекулы РНК.

Процессинг пре-тРНК

Процессинг начинается с того, что в транскрибте образуется внутримолекулярные водородные связи и молекула тРНК принимает форму клеверного листа. Это вторичный уровень организации тРНК, на котором молекула тРНК еще не функциональна. Далее происходит вырезание неинформативных участков из пре-РНК, сращивание информативных участков "разорванных генов" - сплайсинг и модификация 5"- и 3"-концевых участков РНК.

Вырезание неинформативных участков пре-РНК осуществляется с помощью рибонуклеаз (экзо- и эндонуклеаз). После удаления излишков нуклеотидов происходит метилирование оснований тРНК. Реакция осуществляется метилтрансферазами. В роли донора метильных групп выступает S-аденозилметионин. Метилирование препятствует разрушению тРНК нуклеазами. Окончательно зрелая тРНК образуется путем присоединения специфической тройки нуклеотидов (акцепторного конца) - ЦЦА, которое осуществляется специальной РНК-полимеразой.

По завершении процессинга во вторичной структуре вновь образуются дополнительные водородные связи за счет которых тРНК переходит на третичный уровень организации и принимает вид так называемой L-формы. В таком виде тРНК уходит в гиалоплазму.

Строение тРНК

В основе структуры транспортной РНК лежит цепочка нуклеотидов. Однако в силу того, что любая цепочка нуклеотидов имеет положительно и отрицательно заряженные части, она не может находиться в клетке в развернутом состоянии. Эти заряженные части притягиваясь друг к другу легко образуют между собой водородные связи по принципу комплементарности. Водородные связи причудливо скручивают нить т-РНК и удерживают ее в таком положении. В результате этого вторичная структура т-РНК имеет вид "клеверного листа" (рис.), содержащего в своей структуре 4 двухцепочечных участка. Высокое содержание минорных или модифицированных нуклеотидов, отмечаемых в цепи тРНК и неспособных к комплементарным взаимодействиям, формирует 5 одноцепочечных участков.

Т.о. вторичная структура т-РНК образуется вследствие внутрицепочечного спаривания комплементарных нуклеотидов отдельных участков тРНК. Участки тРНК, не вовлекаемые в образование водородных связей между нуклеотидами, образуют петли или линейные звенья. В тРНК выделяют следующие структурные участки:

  1. Акцепторный участок (конец) , состоящий из четырех линейно расположенных нуклеотидов, три из которых имеют во всех типах тРНК одинаковую последовательность - ЦЦА. Гидроксил 3"-ОН аденозина свободен. К нему присоединяется карбоксильной группой аминокислота, отсюда и название этого участка тРНК - акцепторный. Связанную с 3"-гидроксильной группой аденозина аминокислоту тРНК доставляет к рибосомам, где происходит синтез белка.
  2. Антикодоновая петля , обычно образуемая семью нуклеотидами. Она содержит специфический для каждой тРНК триплет нуклеотидов, называемый антикодоном. Антикодон тРНК по принципу комплементарности спаривается с кодоном мРНК. Кодон-антикодоновое взаимодействие определяет порядок расположения аминокислот в полипептидной цепи во время сборки ее в рибосомах.
  3. Псевдоуридиловая петля (или ТΨС-петля) , состоящая из семи нуклеотидов и обязательно содержащая остаток псевдоуридиловой кислоты. Предполагают, что псевдоуридиловая петля участвует в связывании тРНК с рибосомой.
  4. Дигидроуридиновая, или D-петля , состоящая обычно из 8-12 нуклеотидных остатков, среди которых обязательно имеется несколько остатков дигидроуридина. Считают, что D-петля необходима для связывания с аминоацил-тРНК-синтетазой, которая участвует в узнавании аминокислотой своей тРНК (см. "Биосинтез белка"),
  5. Добавочная петля , которая варьирует по размерам и составу нуклеотидов у разных тРНК.

Третичная структура т-РНК уже не имеет формы клеверного листа. За счет образования водородных связей между нуклеотидами из разных частей "листа клевера" его лепестки заворачиваются на тело молекулы и удерживаются в таком положении дополнительно ван-дер-ваальсовыми связями, напоминая собой форму буквы Г или L. Наличие стабильной третичной структуры является еще одной особенностью т-РНК, в отличие от длинных линейных полинуклеотидов м-РНК. Понять, как именно изгибаются различные части вторичной структуры т-РНК при образовании третичной структуры можно по рис., сопоставив цвета схемы вторичной и третичной структуры т-РНК.

Транспортные РНК (т-РНК) переносят аминокислоты из цитоплазмы в рибосомы в процессе синтеза белка. Из таблицы с генетическим кодом видно, что каждая аминокислота кодируется несколькими последовательностями нуклеотидов, поэтому каждой аминокислоте соответствуют свои транспортные РНК. В результате этого существует большое разнообразие т-РНК: от одного до шести видов для каждой из 20 аминокислот. Виды тРНК, способные связывать одну и ту же аминокислоту, называются изоакцепторными (например аланин может быть присоединен к т-РНК, антикодон которой будет комплементарен кодонам GCU, GCC, GCA, GCG). Специфичность тРНК обозначается верхним индексом, например: тРНК Ala .

Для процесса синтеза белка главными функциональными частями т-РНК являются: антикодон - последовательность нуклеотидов, находящихся на антикодоновой петле, комплементарных кодону информационной РНК (и-РНК) и акцепторная часть - противоположный антикодону конец т-РНК, к которому присоединяется аминокислота. Последовательность оснований в антикодоне напрямую зависит от вида аминокислоты, прикреплённой к 3"-концу. Так, например, т-РНК, антикодон которой имеет последовательность 5"-ЦЦА-3", может нести только аминокислоту триптофан. Следует отметить, что данная зависимость лежит в основе передачи генетической информации, носителем которой выступает т-РНК.

В процессе синтеза белка т-РНК антикодоном распознает трехбуквенную последовательность генетического кода (кодона) и-РНК, сопоставляя ей единственную соответствующую аминокислоту, закрепленную на другом конце тРНК. Только в случае комплементарности антикодона к участку мРНК транспортная РНК может к ней присоединиться и отдать переносимую аминокислоту на формирование протеиновой цепочки. Взаимодействие т-РНК и и-РНК происходит в рибосоме, которая также является активным участником трансляции.

Распознавание т-РНК своей аминокислоты и кодона и-РНК происходит определенным образом:

  • Связывание "своей" аминокислоты с т-РНК происходит с помощью фермента - специфической аминоацил-тРНК-синтетазы

    Существуют большое разнообразие аминоацил-тРНК-синтетаз - по числу тРНК, используемых аминокислотами. Сокращенно их называют АРСазы. Аминоацил-тРНК-синтетазы крупные молекулы (мол.масса 100 000 - 240 000), имеющие четвертичную структуру. Они специфически узнают тРНК и аминокислоты и катализируют их соединение. Для этого процесса требуется АТФ, энергия которой используется на активирование аминокислоты с карбоксильного конца и присоединение ее к гидроксилу (3"-ОН) аденозина акцепторного конца (ЦЦА) тРНК. Считается, что в молекуле каждой аминоацил-тРНК-синтетазы имеются центры связывания по крайней мере три центра связывания: для аминокислоты, изоакцепторных тРНК и АТФ. В центрах связывания происходит образование ковалентной связи, при соответствии аминокислоты тРНК, и гидролиз такой связи в случае их несоответствия (присоединения к тРНК "не той" аминокислоты).

    АРСазы обладают способностью выборочно использовать при узнавании ассортимент тРНК для каждой аминокислоты, т.е. ведущим звеном узнавания является аминокислота, а к ней подгоняется своя тРНК. Далее тРНК путем простой диффузии переносит присоединенную к ней аминокислоту к рибосомам, где происходит сборка белка из аминокислот, поступающих в виде разных аминоацил-тРНК.

    Связывание аминокислоты с тРНК

    Связывание тРНК и аминокислоты происходит следующим образом (рис.): к аминоацил-тРНК-синтетазе присоединяется аминокислота и молекула АТФ. Для последующего аминоацелирования молекула АТФ высвобождает энергию, отщепляя две фосфатные группы. Оставшийся АМФ (аденозинмонофосфат) присоединяется к аминокислоте, подготавливая ее к соединению с акцепторным участком тРНК - акцепторной шпилькой. После чего синтетаза присоединяет к себе соответствующую аминокислоте родственную тРНК. На этом этапе происходит проверка соответствия тРНК синтетазе. В случае сооответствия тРНК плотно присоединяется к синтетазе, изменяя ее структуру, что приводит к запуску процесса аминоацелирования - присоединения аминокислоты к тРНК.

    Аминоацилирование происходит в процессе замены присоединенной к аминокислоте молекулы АМФ на молекулу тРНК. После этой замены АМФ покидает синтетазу, а тРНК задерживается для последней проверки аминокислоты.

    Проверка соответствия тРНК присоединенной аминокислоте

    Модель синтетазы для проверки соответствия тРНК присоединенной аминокислоте предполагает наличие двух активных центров: синтетического и коррекционного. В синтетическом центре происходит присоединение тРНК к аминокислоте. Акцепторный участок тРНК, захваченной синтетазой, вначале контактирует с синтетическим центром, в котором уже размещена аминокислота, соединенная с АМФ. Этот контакт акцепторного участка тРНК придает ему неестественный изгиб до момента присоединения аминокислоты. После того, как происходит присоединение аминокислоты с акцепторному участку тРНК, необходимость нахождения данного участка в синтетическом центре отпадает, тРНК распрямляется и перемещает присоединенную к ней аминокислоту в коррекционный центр. При несовпадении размеров молекулы аминокислоты, присоединенной к тРНК, и размеров коррекционного центра, аминокислота опознается как неправильная и отсоединяется от тРНК. Синтетаза готова к следующему циклу. При совпадении размеров молекулы аминокислоты, присоединенной к тРНК, и размеров коррекционного центра, заряженная аминокислотой тРНК освобождается: она готова сыграть свою роль в трансляции протеина. А синтетаза готова присоединить новые аминокислоту и тРНК, и начать повторный цикл.

    Соединение несоответствующей аминокислоты с синтетазой в среднем происходит в 1-м случае из 50 тыс., а с ошибочной тРНК всего лишь один раз на 100 тысяч присоединений.

  • Взаимодействие кодона м-РНК и антикодона т-РНК происходит по принципу комплементарности и антипараллельности

    Взаимодействие тРНК с кодоном мРНК по принципу комплементраности и антипараллельности означает: поскольку смысл кодона мРНК читается в направлении 5"->3", то антикодон в тРНК должен читаться в направлении 3"->5". При этом первые два основания кодона и антикодона спариваются строго комплементарно, т. е. образуются только пары А У и Г Ц. Спаривание же третьих оснований может отступать от этого принципа. Допустимые пары определяются схемой:

    Из схемы вытекает следующее.

    • Молекула тРНК связывается только с 1-м типом кодона, если третий нуклеотид в ее антикодоне - Ц или А
    • тРНК связывается с 2-мя типами кодонов, если антикодон заканчивается на У или Г.
    • И, наконец, тРНК связывается с 3-мя типами кодонов, если антикодон кончается на И (инозиновый нуклеотид); такая ситуация, в частности, в аланиновой тРНК.

      Отсюда, в свою очередь, следует, что для узнавания 61 смыслового кодона требуется, в принципе, не такое же, а меньшее количество разных тРНК.

    Рибосомальная РНК

    Рибосомальные РНК являются основой для формирования субъединиц рибосом. Рибосомы обеспечивают пространственное взаиморасположение мРНК и тРНК в процессе синтеза белка.

    Каждая рибосома состоит из большой и малой субъединиц. Субъединицы включают в себя большое количество белков и рибосомальные РНК, которые не подвергаются трансляции. Рибосомы, как и рибосомальные РНК, различаются по коэффициенту седиментации (осаждения), измеряемому в единицах Сведберга (S). Данный коэффициент зависит от скорости осаждения субъединиц при центрифугировании в насыщенной водной среде.

    Каждая рибосома эукариот имеет коэффициент седиментации, равный 80S, и ее принято обозначать как 80S-частицу. Она включает

    • малую субъединицу (40S), содержащую рибосомальную РНК с коэффициентом седиментации 18S рРНК и 30 молекул различных белков,
    • большую субъединицу (60S), которая включает 3 разные молекулы рРНК (одну длинную и две короткие - 5S, 5,8S и 28S), а также 45 белковых молекул.

      Субъединицы образуют "скелет" рибосомы, каждый из которых окружен своими белками. Коэффициент седиментации полной рибосомы не совпадает с суммой коэффициентов двух ее субъединиц, что связано с пространственной конфигурацией молекулы.

    Устройство рибосом прокариотов и эукариотов примерно одинаковое. Отличаются они лишь молекулярной массой. Бактериальная рибосома имеет коэффициент cедиментации 70S и обозначается как 70S-частица, что указывает на меньшую скорость осаждения; содержит

    • малую (30S) субъединицу - 16S рРНК + белки
    • большую субъединицу (50S) - 23S рРНК + 5S рРНК + белки большой субчастицы (рис.)

    В рРНК среди азотистых оснований выше чем обычно содержание гуанина и цитозина. Встречаются также минорные нуклеозиды, но не столь часто, как в тРНК: примерно 1 %. Это, в основном, нуклеозиды, метилированные по рибозе. Во вторичной структуре рРНК много двухцепочечных участков и петель (рис.). Таково строение молекул РНК, образуемых в двух последовательно проходящих процессах - транскрипции ДНК и созревании (процессинге) РНК.

    Транскрипция рРНК с ДНК и процессинг рРНК

    Пре-рРНК образуется в ядрышке, где находятся транскриптоны рРНК. Траснкрипция рРНК с ДНК происходит при помощи двух дополнительных РНК-полимераз. РНК-полимераза I транскрибирует 5S, 5,8S и 28S в виде одного длинного 45S-тpaнскрипта, который затем разделяется на необходимые части. Таким образом обеспечивается равное количество молекул. В организме человека в каждом гаплоидном геноме присутствует примерно 250 копий последовательности ДНК, кодирующей 45S-транскрипт. Они расположены в пяти кластерных тандемных повторах (т. е. попарно друг за другом) в коротких плечах хромосом 13, 14, 15, 21 и 22. Данные участки известны как ядрышковые организаторы, так как их транскрипция и последующий процессинг 45S-транскрипта происходят внутри ядрышка.

    Не менее чем в трёх кластерах хромосомы 1 существует 2000 копий 5S-pPHK гена. Их транскрипция протекает в присутствии РНК-полимеразы III снаружи ядрышка.

    В ходе процессинга остается чуть больше половины пре-рРНК и освобождаются зрелые рРНК. Часть нуклеотидов рРНК подвергается модификации, которая состоит в метилировании оснований. Реакция осуществляется метилтрансферазами. В роли донора метальных групп выступает S-аденозилметионин. Зрелые рРНК соединяются в ядре с белками рибосом, поступающих сюда из цитоплазмы, и образуют малую и большую субчастицы рибосом. Зрелые рРНК транспортируются из ядра в цитоплазму в комплексе с белком, который дополнительно защищает их от разрушения и способствует переносу.

    Центры рибосом

    Рибосомы существенно отличаются от других органел клетки. В цитоплазме они встречаются в двух состояниях: в неработающем, когда большая и малая субъединицы отделены друг от друга, и в активном - во время выполнения своей функции - синтеза протеина, когда субъединицы соединяются друг с другом.

    Процесс соединения субъединиц рибосом или сборка активной рибосомы обозначается как инициация трансляции. Эта сборка происходит строго упорядоченным образом, что обеспечивается функциональными центрами рибосом. Все эти центры находятся на контактирующих поверхностях обеих субъединиц рибосомы. К ним относятся:

    1. Центр связывания мРНК (М центр). Он образован участком 18S рРНК, который комплементарен на протяжении 5-9 нуклеотидов 5"-нетранслируемому фрагменту мРНК
    2. Пептидильный центр (П-центр). В начале процесса трансляции с ним связывается инициирующая аа-тРНК. У эукариот инициирующий кодон всех мРНК всегда кодирует метионин, поэтому инициирующей аа-тРНК является одна из двух метиониновых аа-тРНК, отмечаемая нижним индексом i: Мет-тРНК i Met . На последующих же стадиях трансляции в П-центре находится пептидил-тРНК, содержащая уже синтезированную часть пептидной цепи.

      Иногда говорят также о Е-центре (от "exit" - выход), куда перемещается тРНК, потерявшая связь с пептидилом, перед тем, как покинуть рибосому. Однако можно рассматривать этот центр как составную часть П-центра.

    3. Аминокислотный центр (А-центр) - место связывания очередной аа-тРНК.
    4. Пептидилтрансферазный центр (ПТФ центр) - он катализирует перенос пептидила из состава пептидил-тРНК на поступившую в А центр очередную аа-тРНК. При этом образуется еще одна пептидная связь и пептидил удлиняется на одну аминокислоту.

    Как в аминокислотном центре, так и в пептидильном центре антикодоновая петля соответствующей тРНК (аа-тРНК или пептидил-тРНК), очевидно, обращена к М-центру - центру связывания матричной РНК (взаимодействуя с мРНК), а акцепторная петля с аминоацилом или пептидилом к ПТФ центру.

    Распределение центров между субъединицами

    Распределение центров между субъединицами рибосомы происходит следующим образом:

    • Малая субъединица. Поскольку именно она содержит 18S-рРНК, с участком которой связывается мРНК, то М-центр расположен на данной субъединице. Кроме того, здесь же находятся основная часть А-центра и небольшая часть П-центра.
    • Большая субъединица . На ее контактирующей поверхности расположены остальные части П- и A-центров. В случае П-центра - это его основная часть, а в случае А-центра - участок связывания акцепторной петли аа-тРНК с аминокислотным радикалом (аминоацилом); остальная же и большая часть аа-тРНК связывается с малой субъединицей. Большой субъединице принадлежит также ПТФ центр.
    Всеми этими обстоятельствами и определяется порядок сборки рибосомы на стадии инициации трансляции.

    Инициация рибосомы (подготовка рибосомы к синтезу белка)

    Синтез белка, или собственно трансляцию, принято разделять на три фазы: инициации (начало), элонгации (удлинение полипептидной цепи) и терминации (окончание). В фазу инициации происходит подготовка рибосомы к работе: соединение ее субъединиц. У бактериальных и эукариотических рибосом соединение субъединиц и начало трансляции протекает по-разному.

    Начало трансляции - наиболее медленный процесс. В нем кроме субъединиц рибосомы, мРНК и тРНК принимают участие ГТФ и три белковых фактора инициации (IF-1, IF-2 и IF-3), которые не являются составными компонентами рибосомы. Факторы инициации облегчают связывание мРНК с малой субъединицей и ГТФ. ГТФ за счет гидролиза обеспечивает энергией процесс смыкания субъединиц рибосомы.

    1. Инициация начинается с того, что малая субъединица (40S) связывается с фактором инициации IF-3, в результате этого возникает препятствие к преждевременному связыванию большой субъединицы и возможность присоединения к ней мРНК.
    2. Далее к комплексу "малая субъединица (40S) + IF-3" присоединяется мРНК (своим 5"-нетранслируемым участком). При этом инициирующий кодон (АУГ) оказывается на уровне пептидильного центра будущей рибосомы.
    3. Далее к комплексу "малая субъединица + IF-3 + мРНК" присоединяются еще два фактора инициации: IF-1 и IF-2, при этом последний несет с собой особую транспортную РНК, которую называют инициирующей аа-тРНК. В состав комплекса входит также ГТФ.

      Малая субъединица соединяясь с мРНК представляет для считывания два кодона. На первом из них протеин IF-2 закрепляет инициаторную аа-тРНК. Второй кодон закрывает протеин IF-1, который блокирует его и не позволяет присоединиться следующей тРНК до момента полной сборки рибосомы.

    4. После связывания инициирующей аа-тРНК, т. е. Мет-тРНК i Met за счет комплементарного взаимодействия с мРНК (инициирующий кодон АУГ) и установки ее на свое место в П-центре происходит связывание субъединиц рибосомы. ГТФ гидролизуется до ГДФ и неорганического фосфата, а выдяляющаяся при разрыве данной макроэргической связи энергия создает термодинамический стимул для протекания процесса в нужном направлении. Одновременно факторы инициации покидают рибосому.

    Таким образом, формируется своеобразный "бутерброд" из четырех основных компонентов. При этом в П-центре собранной рибосомы оказываются инициирующий кодон мРНК (АУГ) и связанная с ним инициирующая аа-тРНК. Последняя при образовании первой пептидной связи играет роль пептидил-тРНК.

    Транскрипты РНК, синтезированные при помощи РНК-полимеразы, обычно претерпевают дальнейшие ферментативные превращения, называемые посттранскрипционным процессингом, и только после этого они обретают свою функциональную активность. Транскрипты незрелой матричной РНК носят название гетерогенной ядерной РНК (гяРНК). Они состоят из смеси очень длинных молекул РНК, содержащих интроны и экзоны. Созревание (процессинг) гяРНК у эукариотов включает несколько стадий, в одну из которых происходит удаление интронов - нетранслируемых вставочных последовательностей и сшивание экзонов. Процесс протекает таким образом, что следующие друг за другом экзоны, т. е. кодирующие фрагменты мРНК, никогда физически не разобщаются. Экзоны очень точно соединяются между собой с помощью молекул, называемых малыми ядерными РНК (мяРНК). Функция этих коротких ядерных РНК, состоящих приблизительно из ста нуклеотидов, долго оставалась непонятной. Ее удалось установить после того, как было обнаружено, что их нуклеотидная последовательность комплементарна последовательностям на концах каждого из интронов. В результате спаривания оснований, содержащихся в мяРНК и на концах свернутого в петлю интрона, последовательности двух экзонов сближаются таким образом, что становится возможным удаление разделяющего их интрона и ферментативное соединение (сплайсинг) кодирующих фрагментов (экзонов). Таким образом, молекулы мяРНК играют роль временных матриц, удерживающих близко друг от друга концы двух экзонов для того, чтобы сплайсинг произошел в правильном месте (рис.).

    Превращение гяРНК в иРНК путём удаления интронов проходит в ядерном комплексе РНК-белков, называемом сплайсомой. У каждой сплайсомы есть ядро, состоящее из трёх малых (низкомолекулярных) ядерных рибонуклеопротеинов, или снурпов. Каждый снурп содержит хотя бы одну малую ядерную РНК и несколько белков. Существует несколько сотен различных малых ядерных РНК, транскрибируемых в основном РНК-полимеразой II. Считают, что их основная функция - распознавание специфических рибонуклеиновых последовательностей посредством спаривания оснований по типу РНК-РНК. Для процессинга гяРНК наиболее важны Ul, U2, U4/U6 и U5.

    Митохондриальная РНК

    Митохондриальная ДНК представляет собой непрерывную петлю и кодирует 13 полипептидов, 22 тРНК и 2 рРНК (16S и 23S). Большинство генов находятся на одной (тяжёлой) цепи, однако некоторое их количество расположено и на комплементарной ей лёгкой. При этом обе цепи транскрибируются в виде непрерывных транскриптов при помощи митохондриоспецифической РНК-полимеразы. Данный фермент кодируется ядерным геном. Длинные молекулы РНК затем расщепляются на 37 отдельных видов, а мРНК, рРНК и тРНК совместно транслируют 13 мРНК. Большое количество дополнительных белков, которые поступают в митохондрию из цитоплазмы, транслируются с ядерных генов. У пациентов с системной красной волчанкой обнаруживают антитела к снурп-белкам собственного организма. Кроме того, считают, что определённый набор генов малой ядерной РНК хромосомы 15q играет важную роль в патогенезе синдрома Прадера-Вилли (наследственное сочетание олигофрении, низкого роста, ожирения, гипотонии мышц).


К нуклеиновым кислотам относят высокополимерные соединения, распадающиеся при гидролизе на пуриновые и пиримидиновые основания, пентозу и фосфорную кислоту. Нуклеиновые кислоты содержат углерод, водород, фосфор, кислород и азот. Различают два класса нуклеиновых кислот: рибонуклеиновые кислоты (РНК) и дезоксирибонуклеиновые кислоты (ДНК) .

Строение и функции ДНК

ДНК — полимер, мономерами которой являются дезоксирибонуклеотиды. Модель пространственного строения молекулы ДНК в виде двойной спирали была предложена в 1953 г. Дж. Уотсоном и Ф. Криком (для построения этой модели они использовали работы М. Уилкинса, Р. Франклин, Э. Чаргаффа).

Молекула ДНК образована двумя полинуклеотидными цепями, спирально закрученными друг около друга и вместе вокруг воображаемой оси, т.е. представляет собой двойную спираль (исключение — некоторые ДНК-содержащие вирусы имеют одноцепочечную ДНК). Диаметр двойной спирали ДНК — 2 нм, расстояние между соседними нуклеотидами — 0,34 нм, на один оборот спирали приходится 10 пар нуклеотидов. Длина молекулы может достигать нескольких сантиметров. Молекулярный вес — десятки и сотни миллионов. Суммарная длина ДНК ядра клетки человека — около 2 м. В эукариотических клетках ДНК образует комплексы с белками и имеет специфическую пространственную конформацию.

Мономер ДНК — нуклеотид (дезоксирибонуклеотид) — состоит из остатков трех веществ: 1) азотистого основания, 2) пятиуглеродного моносахарида (пентозы) и 3) фосфорной кислоты. Азотистые основания нуклеиновых кислот относятся к классам пиримидинов и пуринов. Пиримидиновые основания ДНК (имеют в составе своей молекулы одно кольцо) — тимин, цитозин. Пуриновые основания (имеют два кольца) — аденин и гуанин.

Моносахарид нуклеотида ДНК представлен дезоксирибозой.

Название нуклеотида является производным от названия соответствующего основания. Нуклеотиды и азотистые основания обозначаются заглавными буквами.

Полинуклеотидная цепь образуется в результате реакций конденсации нуклеотидов. При этом между 3"-углеродом остатка дезоксирибозы одного нуклеотида и остатком фосфорной кислоты другого возникает фосфоэфирная связь (относится к категории прочных ковалентных связей). Один конец полинуклеотидной цепи заканчивается 5"-углеродом (его называют 5"-концом), другой — 3"-углеродом (3"-концом).

Против одной цепи нуклеотидов располагается вторая цепь. Расположение нуклеотидов в этих двух цепях не случайное, а строго определенное: против аденина одной цепи в другой цепи всегда располагается тимин, а против гуанина — всегда цитозин, между аденином и тимином возникают две водородные связи, между гуанином и цитозином — три водородные связи. Закономерность, согласно которой нуклеотиды разных цепей ДНК строго упорядоченно располагаются (аденин — тимин, гуанин — цитозин) и избирательно соединяются друг с другом, называется принципом комплементарности . Следует отметить, что Дж. Уотсон и Ф. Крик пришли к пониманию принципа комплементарности после ознакомления с работами Э. Чаргаффа. Э. Чаргафф, изучив огромное количество образцов тканей и органов различных организмов, установил, что в любом фрагменте ДНК содержание остатков гуанина всегда точно соответствует содержанию цитозина, а аденина — тимину («правило Чаргаффа» ), но объяснить этот факт он не смог.

Из принципа комплементарности следует, что последовательность нуклеотидов одной цепи определяет последовательность нуклеотидов другой.

Цепи ДНК антипараллельны (разнонаправлены), т.е. нуклеотиды разных цепей располагаются в противоположных направлениях, и, следовательно, напротив 3"-конца одной цепи находится 5"-конец другой. Молекулу ДНК иногда сравнивают с винтовой лестницей. «Перила» этой лестницы — сахарофосфатный остов (чередующиеся остатки дезоксирибозы и фосфорной кислоты); «ступени» — комплементарные азотистые основания.

Функция ДНК — хранение и передача наследственной информации.

Репликация (редупликация) ДНК

— процесс самоудвоения, главное свойство молекулы ДНК. Репликация относится к категории реакций матричного синтеза, идет с участием ферментов. Под действием ферментов молекула ДНК раскручивается, и около каждой цепи, выступающей в роли матрицы, по принципам комплементарности и антипараллельности достраивается новая цепь. Таким образом, в каждой дочерней ДНК одна цепь является материнской, а вторая — вновь синтезированной. Такой способ синтеза называется полуконсервативным .

«Строительным материалом» и источником энергии для репликации являются дезоксирибонуклеозидтрифосфаты (АТФ, ТТФ, ГТФ, ЦТФ), содержащие три остатка фосфорной кислоты. При включении дезоксирибонуклеозидтрифосфатов в полинуклеотидную цепь два концевых остатка фосфорной кислоты отщепляются, и освободившаяся энергия используется на образование фосфодиэфирной связи между нуклеотидами.

В репликации участвуют следующие ферменты:

  1. геликазы («расплетают» ДНК);
  2. дестабилизирующие белки;
  3. ДНК-топоизомеразы (разрезают ДНК);
  4. ДНК-полимеразы (подбирают дезоксирибонуклеозидтрифосфаты и комплементарно присоединяют их к матричной цепи ДНК);
  5. РНК-праймазы (образуют РНК-затравки, праймеры);
  6. ДНК-лигазы (сшивают фрагменты ДНК).

С помощью геликаз в определенных участках ДНК расплетается, одноцепочечные участки ДНК связываются дестабилизирующими белками, образуется репликационная вилка . При расхождении 10 пар нуклеотидов (один виток спирали) молекула ДНК должна совершить полный оборот вокруг своей оси. Чтобы предотвратить это вращение ДНК-топоизомераза разрезает одну цепь ДНК, что дает ей возможность вращаться вокруг второй цепи.

ДНК-полимераза может присоединять нуклеотид только к 3"-углероду дезоксирибозы предыдущего нуклеотида, поэтому данный фермент способен передвигаться по матричной ДНК только в одном направлении: от 3"-конца к 5"-концу этой матричной ДНК. Так как в материнской ДНК цепи антипараллельны, то на ее разных цепях сборка дочерних полинуклеотидных цепей происходит по-разному и в противоположных направлениях. На цепи 3"-5" синтез дочерней полинуклеотидной цепи идет без перерывов; эта дочерняя цепь будет называться лидирующей . На цепи 5"-3" — прерывисто, фрагментами (фрагменты Оказаки ), которые после завершения репликации ДНК-лигазами сшиваются в одну цепь; эта дочерняя цепь будет называться запаздывающей (отстающей ).

Особенностью ДНК-полимеразы является то, что она может начинать свою работу только с «затравки» (праймера ). Роль «затравок» выполняют короткие последовательности РНК, образуемые при участи фермента РНК-праймазы и спаренные с матричной ДНК. РНК-затравки после окончания сборки полинуклеотидных цепочек удаляются.

Репликация протекает сходно у прокариот и эукариот. Скорость синтеза ДНК у прокариот на порядок выше (1000 нуклеотидов в секунду), чем у эукариот (100 нуклеотидов в секунду). Репликация начинается одновременно в нескольких участках молекулы ДНК. Фрагмент ДНК от одной точки начала репликации до другой образует единицу репликации — репликон .

Репликация происходит перед делением клетки. Благодаря этой способности ДНК осуществляется передача наследственной информации от материнской клетки дочерним.

Репарация («ремонт»)

Репарацией называется процесс устранения повреждений нуклеотидной последовательности ДНК. Осуществляется особыми ферментными системами клетки (ферменты репарации ). В процессе восстановления структуры ДНК можно выделить следующие этапы: 1) ДНК-репарирующие нуклеазы распознают и удаляют поврежденный участок, в результате чего в цепи ДНК образуется брешь; 2) ДНК-полимераза заполняет эту брешь, копируя информацию со второй («хорошей») цепи; 3) ДНК-лигаза «сшивает» нуклеотиды, завершая репарацию.

Наиболее изучены три механизма репарации: 1) фоторепарация, 2) эксцизная, или дорепликативная, репарация, 3) пострепликативная репарация.

Изменения структуры ДНК происходят в клетке постоянно под действием реакционно-способных метаболитов, ультрафиолетового излучения, тяжелых металлов и их солей и др. Поэтому дефекты систем репарации повышают скорость мутационных процессов, являются причиной наследственных заболеваний (пигментная ксеродерма, прогерия и др.).

Строение и функции РНК

— полимер, мономерами которой являются рибонуклеотиды . В отличие от ДНК, РНК образована не двумя, а одной полинуклеотидной цепочкой (исключение — некоторые РНК-содержащие вирусы имеют двухцепочечную РНК). Нуклеотиды РНК способны образовывать водородные связи между собой. Цепи РНК значительно короче цепей ДНК.

Мономер РНК — нуклеотид (рибонуклеотид) — состоит из остатков трех веществ: 1) азотистого основания, 2) пятиуглеродного моносахарида (пентозы) и 3) фосфорной кислоты. Азотистые основания РНК также относятся к классам пиримидинов и пуринов.

Пиримидиновые основания РНК — урацил, цитозин, пуриновые основания — аденин и гуанин. Моносахарид нуклеотида РНК представлен рибозой.

Выделяют три вида РНК : 1) информационная (матричная) РНК — иРНК (мРНК), 2) транспортная РНК — тРНК, 3) рибосомная РНК — рРНК.

Все виды РНК представляют собой неразветвленные полинуклеотиды, имеют специфическую пространственную конформацию и принимают участие в процессах синтеза белка. Информация о строении всех видов РНК хранится в ДНК. Процесс синтеза РНК на матрице ДНК называется транскрипцией.

Транспортные РНК содержат обычно 76 (от 75 до 95) нуклеотидов; молекулярная масса — 25 000-30 000. На долю тРНК приходится около 10% от общего содержания РНК в клетке. Функции тРНК: 1) транспорт аминокислот к месту синтеза белка, к рибосомам, 2) трансляционный посредник. В клетке встречается около 40 видов тРНК, каждый из них имеет характерную только для него последовательность нуклеотидов. Однако у всех тРНК имеется несколько внутримолекулярных комплементарных участков, из-за которых тРНК приобретают конформацию, напоминающую по форме лист клевера. У любой тРНК есть петля для контакта с рибосомой (1), антикодоновая петля (2), петля для контакта с ферментом (3), акцепторный стебель (4), антикодон (5). Аминокислота присоединяется к 3"-концу акцепторного стебля. Антикодон — три нуклеотида, «опознающие» кодон иРНК. Следует подчеркнуть, что конкретная тРНК может транспортировать строго определенную аминокислоту, соответствующую ее антикодону. Специфичность соединения аминокислоты и тРНК достигается благодаря свойствам фермента аминоацил-тРНК-синтетаза.

Рибосомные РНК содержат 3000-5000 нуклеотидов; молекулярная масса — 1 000 000-1 500 000. На долю рРНК приходится 80-85% от общего содержания РНК в клетке. В комплексе с рибосомными белками рРНК образует рибосомы — органоиды, осуществляющие синтез белка. В эукариотических клетках синтез рРНК происходит в ядрышках. Функции рРНК : 1) необходимый структурный компонент рибосом и, таким образом, обеспечение функционирования рибосом; 2) обеспечение взаимодействия рибосомы и тРНК; 3) первоначальное связывание рибосомы и кодона-инициатора иРНК и определение рамки считывания, 4) формирование активного центра рибосомы.

Информационные РНК разнообразны по содержанию нуклеотидов и молекулярной массе (от 50 000 до 4 000 000). На долю иРНК приходится до 5% от общего содержания РНК в клетке. Функции иРНК : 1) перенос генетической информации от ДНК к рибосомам, 2) матрица для синтеза молекулы белка, 3) определение аминокислотной последовательности первичной структуры белковой молекулы.

Строение и функции АТФ

Аденозинтрифосфорная кислота (АТФ) — универсальный источник и основной аккумулятор энергии в живых клетках. АТФ содержится во всех клетках растений и животных. Количество АТФ в среднем составляет 0,04% (от сырой массы клетки), наибольшее количество АТФ (0,2-0,5%) содержится в скелетных мышцах.

АТФ состоит из остатков: 1) азотистого основания (аденина), 2) моносахарида (рибозы), 3) трех фосфорных кислот. Поскольку АТФ содержит не один, а три остатка фосфорной кислоты, она относится к рибонуклеозидтрифосфатам.

Для большинства видов работ, происходящих в клетках, используется энергия гидролиза АТФ. При этом при отщеплении концевого остатка фосфорной кислоты АТФ переходит в АДФ (аденозиндифосфорную кислоту), при отщеплении второго остатка фосфорной кислоты — в АМФ (аденозинмонофосфорную кислоту). Выход свободной энергии при отщеплении как концевого, так и второго остатков фосфорной кислоты составляет по 30,6 кДж. Отщепление третьей фосфатной группы сопровождается выделением только 13,8 кДж. Связи между концевым и вторым, вторым и первым остатками фосфорной кислоты называются макроэргическими (высокоэнергетическими).

Запасы АТФ постоянно пополняются. В клетках всех организмов синтез АТФ происходит в процессе фосфорилирования, т.е. присоединения фосфорной кислоты к АДФ. Фосфорилирование происходит с разной интенсивностью при дыхании (митохондрии), гликолизе (цитоплазма), фотосинтезе (хлоропласты).

АТФ является основным связующим звеном между процессами, сопровождающимися выделением и накоплением энергии, и процессами, протекающими с затратами энергии. Кроме этого, АТФ наряду с другими рибонуклеозидтрифосфатами (ГТФ, ЦТФ, УТФ) является субстратом для синтеза РНК.

    Перейти к лекции №3 «Строение и функции белков. Ферменты»

    Перейти к лекции №5 «Клеточная теория. Типы клеточной организации»

Поделиться: